Jumat, 23 September 2011

MAKALAH FISIKA (Hukum Newton Tentang Gerak)


 
KATA PENGANTAR
Puji dan syukur kami panjatkan kepada Tuhan Yang Maha Esa, karena hanya berkat dan petolongan-Nya, kami dapat menyusun makalah ini.
              
Kami berharap makalah ini dapat menambah pengetahuan mahasiswa-mahasiswa Universitas Negeri  Manado, adapun makalah kami ini berjudul “Hukum Newton Tentang Gerak.”


            Kelompok kami menyadari makalah ini masih terdapat kekurangan, kami sangat mengharapkann kritik dan saran  yang membangun dari semua pihak untuk penyempurnaan makalah ini. Terima kasih.



                                                                                                            Hormat Kami
                                                                                                                Penulis














DAFTAR ISI

Kata Pengantar
Daftar Isi
BAB I    PENDAHULUAN
BAB II   PEMBAHASAN
BAB III  PENUTUP
Daftar Pustaka















BAB I
PENDAHULUAN


1.1            Latar Belakang
Hukum Newton yang membahas tentang gerak, biasanya kita pelajari  ada 3, dimana ketiga hukum tersebut sering menjadi acuan kita untuk meninjau suatu gerak.
1.2            Tujuan Penulisan
·         Memenuhi tugas dari dosen mata kuliah Fisika Dasar.

1.3            Manfaat Penulisan
·         Agar materi ini bisa dipahami/ dimengerti oleh Mahasiswa.

















BAB II
PEMBAHASAN
   
Hukum I Newton
Bagaimana hubungan yang tepat antara Gaya dan Gerak ? Untuk mengawalinya, mari kita bayangkan apa yang terjadi ketika gaya total pada sebuah benda sama dengan nol atau dengan kata lain tidak ada gaya yang bekerja pada benda. Anda pasti akan setuju bahwa benda tersebut dalam keadaan diam, dan jika tidak ada gaya yang bekerja padanya, yaitu tidak ada tarikan atau dorongan, maka benda itu akan tetap diam. Nah, bagaimana jika terdapat gaya total nol yang bekerja pada benda yang sedang bergerak ?
Untuk memperjelas permasalahan ini, anggap saja anda sedang mendorong sekeping uang logam pada permukaan lantai kasar. Setelah anda berhenti mendorong, keping uang logam tersebut tidak akan terus bergerak, namun melambat kemudian berhenti. Untuk menjaganya agar tetap bergerak, kita harus tetap mendorong (memberikan gaya). Jika dicermati dengan saksama, anda akan menyimpulkan bahwa benda-benda yang bergerak secara alami akan berhenti dan sebuah gaya diperlukan agar untuk mempertahankannya agar tetap bergerak. Pada abad ketiga Sebelum Masehi, Aristoteles, seorang filsuf Yunani pernah menyatakan bahwa diperlukan sebuah gaya agar benda tetap bergerak pada bidang datar. Menurut eyang Aristoteles, keadaan alami dari sebuah benda adalah diam. Oleh karena itu perlu ada gaya untuk menjaga agar benda tetap bergerak. Ia juga mengatakan bahwa laju benda sebanding dengan besar gaya, di mana makin besar gaya, makin besar laju gerak benda tersebut.
Setelah 2000 tahun kemudian, Galileo Galilei mempersoalkan pandangan Aristoteles. Galileo mengatakan bahwa sama alaminya bagi sebuah benda untuk bergerak mendatar dengan kecepatan tetap, seperti ketika benda tersebut berada dalam keadaan diam. Untuk memahami pandangan galileo, bayangkan anda mendorong sekeping uang logam pada permukaan lantai yang sangat licin. Setelah anda berhenti mendorong, keping uang logam tersebut akan meluncur jauh lebih panjang (dibandingkan ketika mendorong di atas permukaan lantai kasar). Jika dituangkan minyak pelumas atau pelicin lainnya pada permukaan lantai tersebut, maka keping uang logam akan bergerak lebih jauh, dibandingkan dengan percobaan pertama.
Untuk mendorong sebuah benda yang mempunyai permukaan kasar di permukaan lantai dengan laju tetap, dibutuhkan gaya dengan besar tertentu. Untuk mendorong sebuah benda lain yang sama beratnya tetapi mempunyai permukaan yang licin di atas lantai dengan laju yang sama, akan diperlukan gaya yang lebih kecil. Jika dituangkan pelumas pada permukaan benda dan lantai, maka hampir tidak diperlukan gaya sama sekali untuk menggerakan benda.
Perhatikan bahwa pada percobaan di atas, besarnya gaya dorong semakin kecil akibat permukaan benda semakin licin. Selanjutnya, kita dapat membayangkan sebuah keadaan di mana keping uang logam tersebut tidak bersentuhan dengan lantai sama sekali atau ada pelicin sempurna antara permukaan bawah keping uang logam dengan lantai. Anggapan mengenai adanya pelicin sempurna tersebut membuat uang logam bergerak dengan laju tetap tanpa ada gaya yang diberikan. Ini adalah gagasan Eyang Galileo yang membayangkan dunia tanpa gesekan. Pemikiran ini kemudian membuatnya menyimpulkan bahwa jika tidak ada gaya yang diberikan kepada benda yang bergerak, maka benda tersebut terus bergerak lurus dengan laju tetap. Benda yang sedang bergerak akan melambat apabila pada benda bekerja gaya total. Dengan demikian, eyang Galileo menganggap bahwa gesekan merupakan gaya yang sama dengan tarikan atau dorongan biasa.
Untuk mendorong keping uang logam untuk bergerak pada permukaan lantai, dibutuhkan gaya dari tangan kita, hanya untuk mengimbangi gaya gesekan. Jika benda tersebut bergerak dengan laju tetap, gaya dorongan kita sama besar dengan gaya gesek; tetapi kedua gaya ini memiliki arah yang berbeda sehingga gaya total pada benda adalah nol. Hal ini sesuai dengan pendapat eyang Galileo karena benda bergerak dengan laju tetap apabila pada benda tidak bekerja gaya total.
Hukum I Newton menyatakan bahwa :
Setiap benda tetap berada dalam keadaan diam atau bergerak dengan laju tetap sepanjang garis lurus (percepatan nol), kecuali terdapat gaya total pada benda tersebut.
Secara matematis, Hukum I Newton dapat dinyatakan sebagai berikut :
Kecenderungan suatu benda untuk tetap bergerak atau mempertahankan keadaan diam dinamakan inersia. Karenanya, hukum I Newton dikenal juga dengan julukan Hukum Inersia atau Hukum Kelembaman.
Sifat lembam ini dapat kita amati, misalnya ketika mengeluarkan saus tomat dari botol dengan menggoyangnya. Pertama, kita memulai dengan menggerakan botol ke bawah; pada saat kita mendorong botol ke atas, saus akan tetap bergerak ke bawah dan jatuh pada makanan. Kecenderungan sebuah benda yang diam untuk tetap diam juga diakibatkan oleh inersia atau kelembaman. Misalnya ketika kita menarik selembar kertas yang ditindih oleh tumpukan buku tebal dan berat. Jika lembar kertas tadi ditarik dengan cepat, maka tumpukan buku tersebut tidak bergerak.
Contoh lain: yang sering kita alami adalah ketika berada di dalam mobil. Apabila mobil bergerak maju secara tiba-tiba, maka tubuh kita akan sempoyongan ke belakang, demikian juga ketika mobil tiba-tiba direm, tubuh kita akan sempoyongan ke depan. Hal ini diakibatkan karena tubuh kita memiliki kecenderungan untuk tetap diam jika kita diam dan juga memiliki kecenderungan untuk terus bergerak jika kita telah bergerak.
Perlu diingat bahwa yang terjadi pada Hukum Pertama Newton adalah gaya total. Sebagai contoh (perhatikan gambar di bawah), sebuah kotak yang diam di atas meja datar akan memiliki dua gaya yang bekerja padanya, yakni : gaya ke bawah akibat gaya gravitasi dan gaya dorong ke atas oleh permukaan meja. Dorongan ke atas dari permukaan meja, hanyalah sebesar gaya tarik ke bawah akibat gravitasi, jadi gaya total yang dialami buku adalah nol. Ingat bahwa besarnya gaya tersebut sama namun memiliki arah yang berlawanan sehingga saling menghilangkan. Karena besarnya gaya total = 0, buku tersebut berada dalam kesetimbangan, yang membuatnya diam alias tidak bergerak (benda bergerak dari keadaan diam jika gaya total tidak nol/jika ada gaya total. Pada kasus benda yang sedang bergerak, apabila gaya total nol maka benda bergerak dengan laju tetap). Gaya ke atas dari permukaan disebut Gaya Normal (N), karena arahnya normal atau tegak lurus terhadap permukaan yang bersentuhan. Mengenai Gaya Normal akan kita bahas pada topik khusus.
Gaya yang ditunjukan dalam gambar hanya besarnya saja, dan antara gaya normal dan gaya berat bukan hubungan aksi reaksi (Hukum III Newton), karena aksi reaksinya mereka(gaya normal dan gaya berat .red) memiliki pasangan masing-masing.
Dalam Hukum I Newton, kita telah belajar bahwa jika tidak ada gaya total yang bekerja pada sebuah benda, maka benda tersebut akan tetap diam, atau jika benda tersebut sedang bergerak maka benda tersebut tetap bergerak dengan laju tetap pada lintasan lurus. Apa yang terjadi jika gaya total tidak sama dengan nol ? Sebelum menjawab pertanyaan tersebut,anda perlu memahami pengertian gaya total.
Pengertian Gaya Total
Seperti apakah gaya total itu ? Misalnya kita mendorong sekeping uang logam di atas meja; setelah bergerak, uang logam yang didorong tersebut berhenti. Ketika kita mendorong uang logam tadi, kita memberikan gaya berupa dorongan sehingga uang logam begerak. Nah, selain gaya dorongan kita, pada logam tersebut bekerja juga gaya gesekan udara dan gaya gesekan antara permukaan bawah uang logam dan permukaan meja, yang arahnya berlawanan dengan arah gaya dorongan kita. Apabila jumlah selisih antara kekuatan dorongan kita gaya dorong dan gaya gesekan (baik gaya gesekan udara maupun gaya gesekan antara permukaan logam dan meja) adalah nol, maka uang logam berhenti bergerak/diam. Jika selisih antara gaya dorong yang kita berikan dengan gaya gesekan tidak nol, maka uang logam tersebut akan tetap bergerak. Selisih antara gaya dorong dan gaya gesekan tersebut dinamakan gaya total.



Hukum II Newton
Newton mengatakan bahwa jika pada sebuah benda diberikan gaya total atau dengan kata lain, terdapat gaya total yang bekerja pada sebuah benda, maka benda yang diam akan bergerak, demikian juga benda yang sedang bergerak bertambah kelajuannya. Apabila arah gaya total berlawanan dengan arah gerak benda, maka gaya tersebut akan mengurangi laju gerak benda. Apabila arah gaya total berbeda dengan arah gerak benda maka arah kecepatan benda tersebut berubah dan mungkin besarnya juga berubah. Karena perubahan kecepatan merupakan percepatan maka kita dapat menyimpulkan bahwa gaya total yang bekerja pada benda menyebabkan benda tersebut mengalami percepatan. Arah percepatan tersebut sama dengan arah gaya total. Jika besar gaya total tetap atau tidak berubah, maka besar percepatan yang dialami benda juga tetap alias tidak berubah.
Bagaimana hubungan antara Percepatan dan Gaya ?
Bayangkanlah anda mendorong sebuah gerobak sampah yang bau-nya menyengat. Usahakan sampai gerobak tersebut bergerak. Nah, ketika gerobak bergerak, kita dapat mengatakan bahwa terdapat gaya total yang bekerja pada gerobak itu. Silahkan dorong gerobak sampah itu dengan gaya tetap selama 30 detik. Ketika anda mendorong gerobak tersebut dengan gaya tetap selama 30 menit, tampak bahwa gerobak yang tadinya diam, sekarang bergerak dengan laju tertentu, anggap saja 4 km/jam.
Sekarang, doronglah gerobak tersebut dengan gaya dua kali lebih besar (gerobaknya didiamin dulu). Apa yang anda amati ? Jika anda mendorong gerobak sampah dengan gaya dua kali lipat, maka gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan sebelumnya. Percepatan gerak gerobak dua kali lebih besar. Apabila anda mendorong gerobak dengan gaya lima kali lebih besar, maka percepatan gerobak juga bertambah lima kali lipat. Demikian seterusnya. Kita bisa menyimpulkan bahwa percepatan berbanding lurus dengan gaya total yang bekerja pada benda.
Seandainya percobaan mendorong gerobak sampah diulangi. Percobaan pertama, kita menggunakan gerobak yang terbuat dari kayu, sedangkan percobaan kedua kita menggunakan gerobak yang terbuat dari besi dan lebih berat. Jika anda mendorong gerobak besi dengan gaya dua kali lipat, apakah gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan gerobak sebelumnya yang terbuat dari kayu ?
Tentu saja tidak karena percepatan juga bergantung pada massa benda. Anda dapat membuktikannya sendiri dengan melakukan percobaan di atas. Jika anda mendorong gerobak sampah yang terbuat dari sampah dengan gaya yang sama ketika anda mendorong gerobak yang terbuat dari kayu, makaakan terlihat bahwa percepatan gerobak besi lebih kecil. Apabila gaya total yang bekerja pada benda tersebut sama, maka makin besar massa benda, makin kecil percepatannya, sebaliknya makin kecil massa benda makin besar percepatannya.
Hukum II Newton tentang Gerak :
Jika suatu gaya total bekerja pada benda, maka benda akan mengalami percepatan, di mana arah percepatan sama dengan arah gaya total yang bekerja padanya. Vektor gaya total sama dengan massa benda dikalikan dengan percepatan benda.
Jika persamaan di atas ditulis dalam bentuk a = F/m, tampak bahwa percepatan sebuah benda berbanding lurus dengan resultan gaya yang bekerja padanya dan arahnya sejajar dengan gaya tersebut. Tampak juga bahwa percepatan berbanding terbalik dengan massa benda.
Jadi apabila tidak ada gaya total alias resultan gaya yang bekerja pada benda maka benda akan diam apabila benda tersebut sedang diam; atau benda tersebut bergerak dengan kecepatan tetap, jika benda sedang bergerak. Ini merupakan bunyi Hukum I Newton.
Setiap gaya F merupakan vektor yang memiliki besar dan arah. Persamaan hukum II Newton di atas dapat ditulis dalam bentuk komponen pada koordinat xyz alias koordinat tiga dimensi, antara lain :
Satuan massa adalah kilogram, satuan percepatan adalah kilogram meter per sekon kuadrat (kg m/s2). Satuan Gaya dalam Sistem Internasional adalah kg m/s2. Nama lain satuan ini adalah Newton; diberikan untuk menghargai jasa eyang Isaac Newton. Satuan-satuan tersebut merupaka satuan Sistem Internasional (SI). Dengan kata lain, satu Newton adalah gaya total yang diperlukan untuk memberikan percepatan sebesar 1 m/s2 kepada massa 1 kg. Hal ini berarti 1 Newton = 1 kg m/s2.
Dalam satuan CGS (centimeter, gram, sekon), satuan massa adalah gram (g), gaya adalah dyne. Satu dyne didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 cm/s2 untuk benda bermassa 1 gram. Jadi 1 dyne = 1 gr cm/s2.
Kedua jenis satuan yang kita bahas di atas adalah satuan Sistem Internasional (SI). Untuk satuan Sistem Inggris (British Sistem), satuan gaya adalah pound (lb). 1 lb = 4,45 N. Satuan massa = slug. Dengan demikian, 1 pound didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 ft/s2 kepada benda bermassa 1 slug.

Hukum III Newton
Pada Hukum II Newton, kita belajar bahwa gaya-gaya mempengaruhi gerakan benda. Dari manakah gaya tersebut datang ? dalam kehidupan sehari-hari, kita mengamati bahwa gaya yang diberikan kepada sebuah benda, selalu berasal dari benda lain. gerobak bergerak karena kita yang mendorong, paku dapat tertanam karena dipukul dengan martil, buah mangga yang lezat jatuh karena ditarik oleh gravitasi bumi, demikian juga benda yang terbuat dari besi ditarik oleh magnet. Apakah semua benda bergerak karena diberikan gaya oleh benda lain ?
Newton mengatakan bahwa kenyataan dalam kehidupan sehari-hari tidak semuanya seperti itu. Ketika sebuah benda memberikan gaya kepada benda lain maka benda kedua tersebut membalas dengan memberikan gaya kepada benda pertama, di mana gaya yang diberikan sama besar tetapi berlawanan arah. Jadi gaya yang bekerja pada sebuah benda merupakan hasil interaksi dengan benda lain. Anda dapat melakukan percobaan untuk membuktikan hal ini. Tendanglah batu atau tembok dengan keras, maka kaki anda akan terasa sakit. Mengapa kaki terasa sakit ? hal ini disebabkan karena ketika kita menendang tembok atau batu, tembok atau batu membalas memberikan gaya kepada kaki kita, di mana besar gaya tersebut sama, hanya berlawanan arah. Gaya yang kita berikan arahnya menuju batu atau tembok, sedangkan gaya yang diberikan oleh batu atau tembok arahnya menuju kaki kita.
Apabila sebuah benda memberikan gaya kepada benda lain, maka benda kedua memberikan gaya kepada benda yang pertama. Kedua gaya tersebut memiliki besar yang sama tetapi berlawanan arah.
Secara matematis Hukum III Newton dapat ditulis sebagai berikut :
F A ke B = - F B ke A
F A ke B adalah gaya yang diberikan oleh benda A kepada benda B, sedangkan F B ke A adalah gaya yang yang diberikan benda B kepada benda A. Misalnya ketika anda menendang sebuah batu, maka gaya yang anda berikan adalah F A ke B, dan gaya ini bekerja pada batu. Gaya yang diberikan oleh batu kepada kaki anda adalah - F B ke A. Tanda negatif menunjukkan bahwa arah gaya reaksi tersebut berlawanan dengan gaya aksi yang anda berikan. Jika anda menggambar tanda panah yang melambangkan interaksi kedua gaya ini, maka gaya F A ke B digambar pada batu, sedangkan gaya yang diberikan batu kepada kaki anda, - F B ke A, digambarkan pada kaki anda.
Persamaan Hukum III Newton di atas juga bisa kita tulis sebagai berikut :
Faksi = -Freaksi
Hukum warisan Newton ini dikenal dengan julukan hukum aksi-reaksi. Ada aksi maka ada reaksi, yang besarnya sama dan berlawanan arah. Kadang-kadang kedua gaya tersebut disebut pasangan aksi-reaksi. Ingat bahwa kedua gaya tersebut (gaya aksi-gaya reaksi) bekerja pada benda yang berbeda. Berbeda dengan Hukum I Newton dan Hukum II Newton yang menjelaskan gaya yang bekerja pada benda yang sama.
Gaya aksi dan reaksi adalah gaya kontak yang terjadi ketika kedua benda bersentuhan. Walaupun demikian, Hukum III Newton juga berlaku untuk gaya tak sentuh, seperti gaya gravitasi yang menarik buah mangga kesayangan anda. Ketika kita menjatuhkan batu, misalnya, antara bumi dan batu saling dipercepat satu dengan lain. batu bergerak menuju ke permukaan bumi, bumi juga bergerak menuju batu. Gaya total yang bekerja pada bumi dan batu besarnya sama. Bumi bergerak ke arah batu yang jatuh ? karena massa bumi sangat besar maka percepatan yang dialami bumi sangat kecil (Ingat hubungan antara massa dan percepatan pada persamaan hukum II Newton). Walaupun secara makroskopis tidak tampak, tetapi bumi juga bergerak menuju batu atau benda yang jatuh akibat gravitasi. Bumi menarik batu, batu juga membalas gaya tarik bumi, di mana besar gaya tersebut sama namun arahnya berlawanan.
Hukum III Newton dalam Kehidupan Sehari-hari
Konsep Hukum III Newton sebenarnya sering kita alami dalam kehidupan sehari-hari, walau kadang tidak kita sadari. Hal apa saja dalam kehidupan sehari-hari yang menggunakan konsep Hukum III Newton ?
·      Hukum III Newton berlaku ketika kita berjalan atau berlari
Ketika berjalan, telapak kaki kita memberikan gaya aksi dengan mendorong permukaan tanah atau lantai ke belakang. Permukaan tanah atau lantai memberikan gaya reaksi kepada kita dengan mendorong telapak kaki kita ke depan, sehingga kita berjalan ke depan. Ketika berjalan mundur, telapak kaki kita mendorong permukaan tanah atau lantai ke depan. Sebagai reaksi, permukaan tanah atau lantai mendorong telapak kaki kita ke belakang sehingga kita bisa berjalan mundur. Besarnya gaya aksi dan reaksi sama, tetapi arahnya berlawanan. Telapak kaki kita mendorong lantai ke belakang, lantai mendorong telapak kaki kita ke depan. Ketika kita berjalan lambat, gaya yang kita berikan kecil, sehingga gaya reaksi yang diberikan oleh lantai juga kecil, akibatnya kita berjalan pelan. Pada saat kita berjalan cepat, telapak kaki kita menekan lantai lebih kuat, akibatnya gaya reaksi yang diberikan lantai juga besar sehingga kita didorong dengan kuat ke depan. Dirimu dapat melakukan percobaan ini untuk membuktikannya. Ketika kita berlari, gaya aksi berupa dorongan yang diberikan oleh telapak kaki kita kepada permukaan tanah sangat besar sehingga gaya reaksi yang diberikan oleh permukaan tanah kepada telapak kaki kita juga sangat besar. Akibatnya kita bisa berlari dengan kencang. Jadi besarnya gaya reaksi yang diberikan oleh permukaan tanah atau lantai kepada telapak kaki kita sebanding alias sama besar dengan gaya aksi yang kita berikan dan arahnya berlawanan.

·         Hukum III Newton berlaku ketika kita berenang
Apakah dirimu bisa berenang ? Ketika kita berenang, kaki dan tangan kita mendorong air ke belakang. Sebagai reaksi, air mendorong kaki dan tangan kita ke depan, sehingga kita berenang ke depan.
·         Hukum III Newton berlaku pada pistol atau senapan yang ditembakan
Ketika sebuah peluru ditembakan, pistol atau senapan memberikan gaya aksi kepada peluru dengan mendorong peluru ke depan. Karena mendapat gaya aksi maka peluru tersebut mendorong pistol atau senapan ke belakang. Akibatnya, para penembak merasa tersentak ke belakang akibat dorongan tersebut.
·         Hukum III Newton berlaku pada Balon Udara yang bergerak
Pernahkah dirimu melihat dan memegang balon ?  Hukum III Newton juga berlaku pada balon udara yang bergerak ? Yang dimaksudkan di sini bukan balon udara yang bergerak karena ditiup angin, tapi karena di dorong oleh udara yang ada di dalam balon. lakukan percobaan berikut ini sehingga menambah pemahamanmu. Beli sebuah balon di warung terdekat. Tiuplah balon sampai balon mengembung; jangan lupa jepit mulut balon dengan jarimu agar udara tidak keluar. Nah, silahkan lepas jepitan tanganmu pada mulut balon. Apa yang terjadi ? jika posisi balon tegak, di mana mulut balon berada di bawah, maka balon akan meluncur ke atas. Balon bergerak ke atas karena balon memberikan gaya aksi dengan mendorong udara ke bawah (udara keluar lewat mulut balon). Udara yang keluar lewat mulut balon memberikan gaya reaksi dengan mendorong balon ke atas, sehingga balon bergerak ke atas. Apabila posisi balon dibalik, di mana mulut balon berada di atas, maka balon akan bergerak ke bawah. Besar gaya aksi dan reaksi sama, hanya berlawanan arah. Balon mendorong udara ke bawah, udara mendorong balon ke atas. Atau sebaliknya balon mendorong udara ke atas, udara mendorong balon ke bawah. Semakin banyak udara yang ditiupkan ke dalam balon, maka balon bergerak makin cepat ketika mulut balon tersebut dibuka. Hal ini disebabkan karena balon mendorong lebih banyak udara keluar, sehingga udara yang didorong tersebut memberikan reaksi dengan mendorong balon. Semakin banyak udara yang ada di dalam balon, semakin lama dan jauh balon bergerak; semakin sedikit udara dalam balon, semakin pelan balon bergerak. Jadi besar gaya aksi sama dengan besar gaya reaksi, hanya arahnya berlawanan.
·         Hukum III Newton berlaku pada Ikan Gurita yang bergerak dalam air.
Pernahkah kamu menikmati lezatnya ikan gurita ? ikan gurita tidak punya sirip… lalu bagaimana-kah ia berenang ? newton menguasai darat, udara dan laut.  ikan gurita bergerak ke depan dengan menyemprotkan air ke belakang (gaya aksi); air yang disemprotkan tersebut mendorong ikan gurita ke depan (gaya reaksi), sehingga ikan gurita bisa berenang bebas di dalam air laut.
·         Peluncuran Roket menggunakan konsep Hukum III Newton
Bagaimanakah prinsip kerja roket yang diluncurkan ke luar angkasa ? di luar angkasa tidak udara, tapi mengapa roket bisa bergerak ? helikopter atau pesawat terbang bisa bergerak di udara karena terdapat baling-baling yang menggerakan udara, sedangkan roket bisa bergerak di luar angkasa (ruang hampa udara ?).
Konsep dasar peluncuran roket sama dengan percobaan balon yang meluncur ke atas. Roket memberikan gaya aksi yang sangat besar kepada gas dengan mendorong gas keluar dan gas tersebut memberikan gaya reaksi yang sama besar, dengan mendorong roket ke atas. Gaya dorong yang diberikan gas kepada roket sama besar dengan gaya yang diberikan roket kepada gas, hanya arahnya berlawanan. Roket mendorong gas ke bawah, gas mendorong roket ke atas.
Bagaimanakah dengan pesawat jet ? pesawat jet juga menggunakan konsep hukum III Newton. Mesin pesawat jet memberikan gaya aksi dengan menyemburkan gas keluar lewat belakang pesawat, dan gas tersebut memberikan gaya reaksi dengan mendorong pesawat jet ke depan. Gaya dorong yang dilakukan oleh mesin pesawat jet terhadap gas sangat besar sehingga gas juga mendorong pesawat jet dengan gaya yang sangat besar. Mesin pesawat jet mendorong gas ke belakang, gas mendorong pesawat jet ke depan. Jadi arah gaya berlawanan, tapi besar gaya sama. Pesawat jet bergerak horisontal alias mendatar, sedangkan roket bergerak vertikal alias tegak lurus permukaan bumi.
·         Mengapa mobil bergerak ?
Mobil bergerak karena mesin menggerakan roda sehingga roda berputar. Karena roda berputar maka mobil atau sepeda motor bergerak.
Penjelasan seperti ini belum cukup, karena jika mobil atau sepeda motor berada di atas permukaan es atau jalan yang sangat licin (tidak ada gesekan), apakah mobil masih bisa bergerak ?. Mobil atau sepeda motor bisa bergerak ke depan karena ada gaya gesekan yang diberikan jalan pada roda. Gaya gesekan ini adalah gaya reaksi terhadap gaya aksi yang diberikan oleh roda terhadap jalan.
Semakin cepat roda berputar, maka semakin cepat roda tersebut memberikan gaya aksi kepada jalan, dan jalan juga memberikan gaya reaksi secara cepat kepada roda kendaraan. Ingat bahwa gaya aksi dan reaksi tersebut bekerja sepanjang jalan yang dilewati oleh kendaraan beroda. Apakah gaya aksi dan reaksi antara roda dan jalan tersebut yang membuat mobil bergerak cepat ? tidak mesin kendaraan yang memutar roda dengan cepat sehingga kendaraan beroda bergerak cepat. Jika mesin memutar roda dengan lambat maka kendaraan beroda akan berjalan lambat. Tetapi ingat bahwa kendaraan beroda bisa bergerak karena terjadi gaya aksi-reaksi antara roda dan jalan sepanjang lintasan kendaraan tersebut.





BAB III
PENUTUP



Akhir kata “tiada gading yang tak retak”, demikian pula dengan makalah ini, masih jauh dari sempurna. Oleh karena itu, saran dan kritik yang membangun tetap kami nantikan untuk kesempurnaan makalah ini.



















DAFTAR PUSTAKA


Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Kanginan, Marthen, 2002, Fisika untuk SMA kelas X, Semester 1, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Tidak ada komentar:

Poskan Komentar